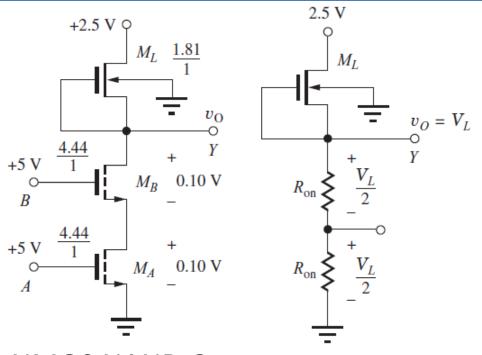
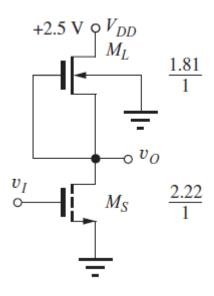

Announcements

- Exam 2 in class on Monday 5/19.
 - Example exam to be posted..

NMOS Logic Gates




Reference inverter

NMOS NOR Gate

- $-M_A$ and M_B are in parallel
- Either of A, B is 1, current path exists, output is 0
- W/L same as reference inverter (to achieve the same V_L)

NMOS Logic Gates

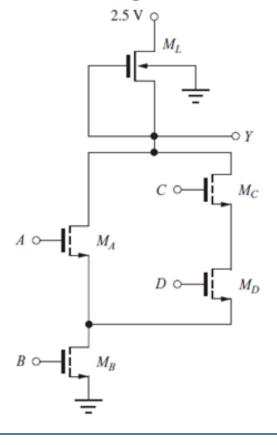
Reference inverter

Ignore Body Effect!

NMOS NAND Gate

- $-M_A$ and M_B are in series
- Only when both A, B is 1, current path exists, output is 0
- W/L doubled from reference inverter (to achieve the same V_i)

Announcements

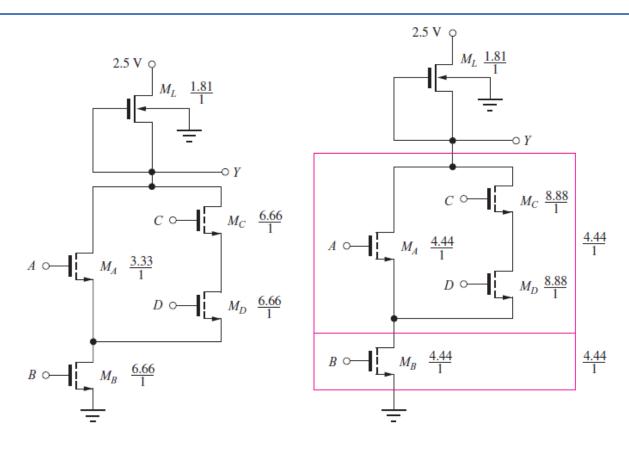

- Exam 2 in class on Monday 5/14.
 - Example exam is posted (solutions over weekend).
 - Review session, Sunday 5/13 at 5pm in EE403.
 - Need to know:
 - Modes of n/pMOS operation and associated current models.
 - 2nd order effects: e.g., body effect, channel length modulation
 - Apply MOS devices in circuit: guess mode, solve KCL/KVL, check, change guess and repeat if necessary.
 - Inverter circuit definitions and analysis (e.g., V_L, V_{IH}, NM_L,...)
 - Simple logic gates (NAND, NOR).
- Office hours this week: today 2-3pm in EE218.

Complex Logic Design

Write output in sum-of-product form, e.g.

$$Y = \overline{AB + CDB}$$

- Place NMOS switches
 - AND => series
 - OR => parallel
- Design W/L ratios



Complex Logic Gate Transistor Sizing

Two ways to find the W/L ratios of the switching transistors

- 1) Using the worst case (longest) path and choosing the W/L ratio such that the total $R_{\rm on}$ of the path is equal to that of $M_{\rm S}$ in the reference converter
- 2) Partitioning the circuit into series sub-networks, and make the equivalent on-resistances equal

Find W/L ratios

$$Y = \overline{AB + CDB} = \overline{(A + CD)B}$$

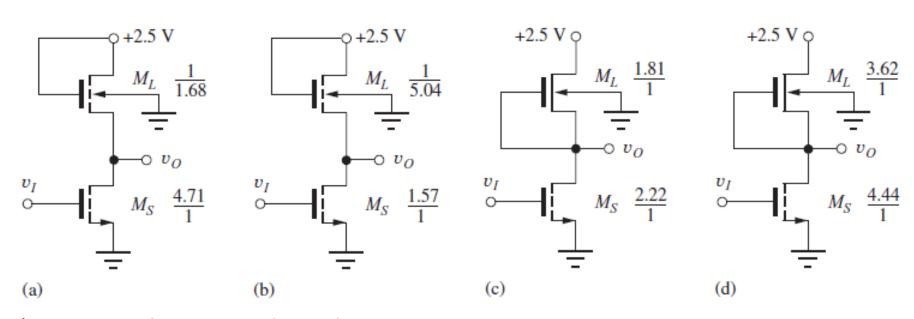
Static Power Dissipation

Static Power Dissipation is the average power dissipation of a logic gate when the output is in both the high and low states

$$P_{av} = \frac{V_{DD}I_{DDH} + V_{DD}I_{DDL}}{2}$$

- I_{DDH} = current in the circuit for $V_O = V_H$
- I_{DDL} = current in the circuit for $v_0 = V_L$

• Since
$$I_{DDH} = 0$$
 A for $v_O = V_H$: $P_{av} = \frac{V_{DD}I_{DDL}}{2}$


• However, worst case is:
$$P_{av} = V_{DD}I_{DDL}$$

Power Scaling in NMOS Logic

 By changing the W/L of the load and switching transistors, it is possible to scale the power level up or down without disturbing V_H and V_L levels.

$$P \propto i_D \propto \left(\frac{W}{L}\right)$$

Power Scaling in MOS Logic

- a) Original Saturated Load Inverter
- b) Saturated Load inverter designed to operate at 1/3 the power
- c) Original Depletion-Mode Inverter
- d) Depletion-mode inverter designed to operate at twice the power